If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-40x^2+320x=0
a = -40; b = 320; c = 0;
Δ = b2-4ac
Δ = 3202-4·(-40)·0
Δ = 102400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{102400}=320$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(320)-320}{2*-40}=\frac{-640}{-80} =+8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(320)+320}{2*-40}=\frac{0}{-80} =0 $
| b÷9b=18 | | -2x^2-18x+7=0 | | 6x+9=135-10x | | b-4b=10 | | 7x-9x+4=16 | | 0=x^2+8x+161 | | -2x^2+76x-558=0 | | x/100=27/30 | | -2x^2+76x-710=0 | | 5(x^2)-2x=16 | | u²-12u-13=0 | | 39=8x–1 | | +5(8x+4)=300 | | -4.5x*2+72=0 | | +5(8x+4)=3000 | | y-(-19)=-16 | | x-(-19)=-11 | | 2y-3y+4=21 | | (2n+3)=75 | | b3+9=10 | | 5t-4.3=11.7 | | (4x)=2x–2 | | c−(-3)=15c= | | 19=−4y−(3−4y)+3 | | 5=9x(9x-5) | | 5=9x−(9x−5) | | 8*2x^-6=0 | | 22=8e | | 51=t-16 | | e-5=27 | | x=1.64*4 | | 5=-9-4x |